# **RESEARCH NOTE**

# Partial Photooxidation of Ethylene with Water as Oxidant over Copper Oxide Supported on Silica

Yuichi Ichihashi\*,1 and Yasuyuki Matsumura†

\* Osaka National Research Institute, AIST, Ikeda, Osaka 563-8577, Japan; and †Research Institute of Innovative Technology for the Earth, Soraku-gun, Kyoto 619-0292, Japan

Received January 2, 2001; accepted May 15, 2001; published online August 9, 2001

Ethylene can be photooxidized selectively with water as an oxidant via irradiation with UV light over copper oxide supported on silica after evacuation at 973 K. Ethylene oxide was formed by irradiation of UV-filtered light at a wavelength longer than 280 nm, and a high selectivity to ethylene oxide (82.5%) with an ethylene conversion of 1.6% was obtained at 278 K for 5 h of irradiation. However, irradiation of UV-unfiltered light results in the disappearance of ethylene oxide, while carbon dioxide, acetaldehyde, ethanol, ethane, and  $C_3$  and  $C_4$  hydrocarbons are formed. X-ray absorption near-edge structure (XANES) spectroscopy showed the presence of  $Cu^+$  cations in the pore structure of the catalyst, suggesting that a mild oxidant can be generated from water on  $Cu^+$  sites by UV light irradiation. © 2001 Academic Press

*Key Words:* photooxidation of ethylene; partial oxidation; XANES; photocatalyst; copper oxide supported on silica; decomposition of water.

## INTRODUCTION

The selective oxidation of hydrocarbons to their respective oxygenates is one of the goals of chemical industries. However, the direct oxidation with molecular oxygen often results in low selectivity of the desired compounds. The process of using a photocatalyst offers a unique route to oxidation (1–4), but it is accompanied by over oxidation due to the high oxidation potential of the photocatalysts; such as  $TiO_2$ . In a photocatalytic system, the decomposition of water can occur, and it is known that hydrogen formation is promoted in the presence of organic compounds which consume oxygen from water. Taylor *et al.* reported the formation of methanol and carbon monoxide from methane in a photocatalytic decomposition of water and suggested the formation of the OH radical, which is considered to be a mild oxidant (5). Gonzalez *et al.* also showed

<sup>1</sup> To whom correspondence should be addressed. E-mail: ichihashi-y @aist.go.jp. that OH radical may be involved in the photooxidation of hydrocarbons over titanium oxide with molecular oxygen in the presence of water (6). Hence, water is expected to be an effective oxidant of hydrocarbons with photocatalysts and it may provide a new oxidation process. In the present study, we will show the possibility of selective photooxidation of ethylene, as a model reaction, using water without molecular oxygen over copper oxide supported on silica.

## **EXPERIMENTALS**

Copper oxide supported on silica (Fuji Silicia, Cariact G-10; BET surface area, 176 m<sup>2</sup> g<sup>-1</sup>; mean pore diameter, 13.7 nm) was prepared by impregnation with an aqueous solution of Cu(NO<sub>3</sub>)<sub>3</sub> (Wako Pure Chemical Industries). The solvent was removed by evacuation at ca. 330 K. The resulting wet solid was freeze-dried, then calcined in air for 5 h at 673 K. The sample will be designated as *n* wt% CuO<sub>x</sub>/SiO<sub>2</sub>, where *n* represents the content of copper (n = 0.05, 0.1, 1, and 3).

The powder catalyst (150 mg) was spread on the flat bottom of a quartz reaction cell (12.5 cm<sup>2</sup>) connected to a conventional vacuum line equipped with a Baratoron vacuum gauge. The photoreaction was carried out under a static condition. Prior to the reaction, the sample was heated in oxygen at 673 K for 1 h, then evacuated at 973 K for 1 h to  $10^{-4}$  Pa. After introduction of ethylene (0.5 kPa, 18  $\mu$ mol) and water (0.5 kPa, 18  $\mu$ mol) in gas phase the catalyst was usually irradiated for 5 h with a high-pressure Hg lamp (100 W) through a water bath of which the bottom was a transparent quartz glass plate. In some experiments, the light shorter than 280 nm was cut off with a color filter (Hoya UV-28). The reactants were purified by vacuum distillation. The products were collected in a liquid nitrogen trap after the irradiation and analyzed using a gas chromatograph (Shimadzu GC-8A) equipped with a thermal conductivity detector with a helium carrier gas. Active



carbon (0.5 m) and Porapak Q (4 m) columns were employed in the analysis.

Profiles of X-ray absorption near-edge structure (XANES) for the samples were taken at room temperature in fluorescence mode for K-edges of Cu at beam-line BL01B1 of SPring-8. The sample was sealed with polyethylene films in nitrogen atmosphere.

## **RESULTS AND DISCUSSION**

Ethylene was oxidized mainly to carbon dioxide  $(CO_2)$ along with a small amount of acetaldehyde  $(CH_3CHO)$  by UV light irradiation without the color filter over silica at 293 K in the presence of water (Table 1). This shows that water can function as an oxidant during UV light irradiation. Ethane  $(C_2H_6)$ ,  $C_3$  and  $C_4$  hydrocarbons, and hydrogen were also detected, but the quantification of hydrogen was impossible. No methane formation was detected.

The loading of copper oxide on silica resulted in an increase in the yield of acetaldehyde and the production of ethanol ( $C_2H_5OH$ ). The conversion obtained with 0.05 wt% CuO<sub>x</sub>/SiO<sub>2</sub> was similar to that of SiO<sub>2</sub>, but the selectivity of acetaldehyde increased from 0.5 to 5.8%. The highest conversion was obtained with 0.1 wt% CuO<sub>x</sub>/SiO<sub>2</sub> and the selectivity of acetaldehyde (19.6%) was relatively high. In the case of 1 wt% CuO<sub>x</sub>/SiO<sub>2</sub>, the conversion decreased, but the selectivity to acetaldehyde (14.2%) was still high. In the absence of water, C<sub>4</sub> hydrocarbons with the yield of 1.5% was mainly produced over 0.1 wt% CuO<sub>x</sub>/SiO<sub>2</sub> by irradiation, and the yield of carbon dioxide by-produced was only 0.2%. This strongly suggests that water is the major oxidant in the photocatalysis.

The Cu K-edge X-ray absorption near-edge structure (XANES) of 0.1 wt% CuO<sub>x</sub>/SiO<sub>2</sub> after evacuation at 973 K was rather similar to that of Cu<sub>2</sub>O and dissimilar to that of CuO (Fig. 1). Since the concentration of copper is very low in the catalyst, almost all the copper particles are probably dispersed on the pore surface of the silica support (7). The presence of the pre-edge peak at 8984 eV is characteristic of the Cu<sup>+</sup> ion (8, 9). Hence, it can be assumed that Cu<sup>+</sup> ions

### TABLE 1

Product Distribution in the Photocatalytic Reaction of  $C_2H_4$  and  $H_2O$  during Irradiation Using UV-Unfiltered Light for 5 h over  $CuO_x/SiO_2$ 

| Cu contents<br>(wt%) | Conversion of C <sub>2</sub> H <sub>4</sub> (%) | Selectivity (%) |       |       |            |                     |                                  |  |
|----------------------|-------------------------------------------------|-----------------|-------|-------|------------|---------------------|----------------------------------|--|
|                      |                                                 | $C_2H_6$        | $C_3$ | $C_4$ | $\rm CO_2$ | CH <sub>3</sub> CHO | C <sub>2</sub> H <sub>5</sub> OH |  |
| 0                    | 7.7                                             | 39.8            | 26.7  | 2.3   | 30.7       | 0.5                 | 0                                |  |
| 0.05                 | 7.2                                             | 28.1            | 32.3  | 6.1   | 24.7       | 5.8                 | 3.0                              |  |
| 0.1                  | 11.4                                            | 22.2            | 26.2  | 5.6   | 21.9       | 19.6                | 4.5                              |  |
| 1                    | 7.4                                             | 18.0            | 29.0  | 7.9   | 24.4       | 14.2                | 6.5                              |  |
| 3                    | 6.3                                             | 11.0            | 36.9  | 8.2   | 24.4       | 12.6                | 6.9                              |  |



FIG. 1. XANES spectra of 0.1 wt% Cu/SiO<sub>2</sub> catalyst evacuated at 973 K (a) before reaction and (b) after photoreaction in the presence of ethylene and water for 1 h, (c) Cu<sub>2</sub>O, (d) CuO.

are formed on 0.1 wt%  $CuO_x/SiO_2$  during the evacuation at 973 K. No significant change in the spectrum of 0.1 wt%  $CuO_x/SiO_2$  after irradiation of UV light in the presence of  $C_2H_4$  and  $H_2O$  for 1 h (see Fig. 1b) showed that  $Cu^+$  ions are not oxidized during the photooxidation.

Since the excitation band of the silica photoluminescence is around 250 nm and no excitation takes place with light longer than 280 nm (1, 10), the activity of silica was slight during the irradiation in the absence of the UV light shorter than 280 nm. However, the band gap energy of Cu<sub>2</sub>O is ca. 2.0 eV (ca. 620 nm), the catalyst containing  $Cu^+$  ions may work with light longer than 280 nm (11, 12). In practice the irradiation of light longer than 280 nm activated the  $CuO_x/SiO_2$  catalysts as summarized in Table 2. Surprisingly, ethylene oxide (C2H4O) was produced during irradiation with light longer than 280 nm while the total conversion of ethylene decreased. No formation of C3 hydrocarbons was observed. Since the production of hydrocarbons is drastically suppressed with the filtered light, it is supposed that the surface sites of the silica support mainly produce ethane and other hydrocarbons with the UV light shorter than 280 nm. The formation of C<sub>3</sub> hydrocarbons under UV light irradiation may be correlated to the formation of ethane because the cleavage of the C-C bonding in ethylene should be accompanied by the hydrogenation process. The conversions of ethylene decreased with an increase in the content of copper above 0.1 wt%, suggesting that high dispersion of copper is advantageous in the photoreaction with both the filtered and unfiltered light; the

### **TABLE 2**

| Cu contents                     | Reaction<br>temperature<br>(K) | Conversion of $C_2H_4$ (%) | Selectivity/% |       |        |                     |           |                                  |  |
|---------------------------------|--------------------------------|----------------------------|---------------|-------|--------|---------------------|-----------|----------------------------------|--|
| (wt%)                           |                                |                            | $C_2H_6$      | $C_4$ | $CO_2$ | CH <sub>3</sub> CHO | $C_2H_4O$ | C <sub>2</sub> H <sub>5</sub> OH |  |
| <b>0.05</b> <sup>a</sup>        | 293                            | 0.6                        | 2.3           | 1.2   | 25.5   | 21.4                | 49.6      | 0                                |  |
| <b>0</b> .1 <sup><i>a</i></sup> | 293                            | 1.1                        | 1.0           | 0.4   | 39.6   | 16.4                | 42.6      | 0                                |  |
| $1^{a}$                         | 293                            | 0.8                        | 1.9           | 3.7   | 30.8   | 32.9                | 28.6      | 2.1                              |  |
| $3^{a}$                         | 293                            | 0.4                        | 3.9           | 6.3   | 13.3   | 39.5                | 32.9      | 4.1                              |  |
| $0.05^{a}$                      | 278                            | 1.6                        | 0.5           | 0.2   | 2.1    | 14.7                | 82.5      | 0                                |  |
| $0.05^{b}$                      | 278                            | 2.5                        | 0.4           | 0.4   | 1.8    | 14.7                | 81.7      | 1.0                              |  |

Product Distribution in the Photocatalytic Reaction of  $C_2H_4$  and  $H_2O$  during Irradiation Using UV-Filtered Light ( $\lambda > 280$  nm) over  $CuO_x/SiO_2$ 

<sup>*a*</sup> Period of photo irradiation, 5 h.

<sup>b</sup> Period of photo irradiation, 10 h.

interaction between copper and silica may stabilize the Cu<sup>+</sup> species.

When the reaction was carried out at 278 K over 0.05 wt%  $CuO_x/SiO_2$  with light longer than 280 nm, the conversion of ethylene during a 5-h reaction was significantly higher than that at 293 K (see Table 2). It is noteworthy that the selectivity of ethylene oxide increased to more than 80% while that of carbon dioxide was only 2%. The product distribution of the reaction for 10 h was similar to that for the reaction of 5 h, while the conversion increased to 2.5%. It was also confirmed that the quantity of oxygen atoms in the products produced in the reaction for 2 days exceeded the number of copper ions in the 0.05 wt%  $CuO_x/SiO_2$ catalyst. Thus, it is proved that the formation of ethylene oxide is a catalytic process and water is the oxidant. The color of the catalyst, which was yellowish after evacuation at 973 K, did not obviously change during the reaction. The reaction was repeatable with the spent catalyst, suggesting that carbon deposition during the reaction, if present, is small.

Although a detailed mechanism will be the subject of future work, we can emphasize that water is a possible oxidant for the selective oxidation of hydrocarbons in conjunction with copper oxide catalysts. Since the catalytic system in this study was designed as a model reaction to prove it, the reaction rate obtained was too low as an industrial standard. However, we believe that the performance can be improved by the further development of the catalyst, which probably contains a larger number of stable  $Cu^+$  species, while justification of the reaction conditions such as reaction pressure, reaction temperature, and power of the light source is also important.

#### ACKNOWLEDGMENTS

The synchrotron radiation experiments were performed at the SPring-8 with the approval of the Japan Synchrotron Radiation Research Institute (JASRI) (Proposal No. 1999A0030-NX-np).

## REFERENCES

- 1. Ichihashi, Y., and Matsumura, Y., *Stud. Surf. Sci. Catal.* **130**, 1955 (2000).
- Park, D. R., Zhang, J., Ikeue, K., Yamashita, H., and Anpo, M., J. Catal. 185, 114 (1999).
- Yagi, M., Yamaguchi, T., and Kaneko, M., J. Mol. Catal. A: Chem. 149, 289 (1999).
- Yoshida, H., Tanaka, T., Yamamoto, M., Funabiki, T., and Yoshida, S., J. Chem. Soc., Chem. Commun., 2125 (1996).
- Taylor, C. E., Noceti, R. P., D'este, J. R., and Martello, D. V., *Stud. Surf. Sci. Catal.* **101**, 407 (1996).
- Gonzalez, M. A., Howell, S. G., and Sikdar, S. K., J. Catal. 185, 114 (1999).
- Matsumura, Y., Kuraoka, K., Yazawa, T., and Haruta, M., *Catal. Today* 45, 191 (1998).
- Kau, L. S., Spira-Solomon, D. J., Penner-Hahn, J. E., Hodgson, K. O., and Solomon, E. I., *J. Am. Chem. Soc.* **109**, 6433 (1987).
- 9. Yamashita, H., Matsuoka, M., Tsuji, K., Shioya, Y., Anpo, M., and Che, M., *J. Phys. Chem.* **100**, 397 (1996).
- Ichihashi, Y., Yamashita, H., Anpo, M., Souma, Y., and Matsumura, Y., *Catal. Lett.* 53, 107 (1998).
- 11. Baumeister, P. W., Phys. Rev. 121, 359 (1961).
- Nagasubramanian, G., Gioda, A. S., and Bard, A. J., *J. Electrochem. Soc.* **128**, 2158 (1981).